Oblasti, naše knjige

Java, JavaScript, JScript, Perl

C++ Visual C++ C#

Apple - MAC OS X

Visual Basic .NET, VBA, V. Studio

Web design

Android

PHP I MYSQL

Python programiranje

WordPress

AutoCad, ArchiCAD, SolidWorks, Catia, Pro/Engineer

Mašinsko učenje

Access

Animacija

Audio, Multimedia, Video

Baze podataka

Cloud

CSS

Delphi

Digitalna fotografija

Django

E-komerc

ECDL

GOOGLE

Grafika, Dizajn, Štampa

Hardver

Internet

Joomla

jQuery

Mreže

MS Office

Obrada teksta

OFFICE 2013

Programiranje

Raspberry PI

Rečnici

Robotika

Sertifikati

SQL Server

Statistika

Tabele

Telekomunikacije

Unix, Linux

Windows

Windows 7

Windows 8

Zaštita i sigurnost

 

Oblasti, drugi izdavači

Alternativna učenja

Antropologija

Arheologija

Arhitektura

Astrologija

Astronomija

Audio kursevi + knjige

Autobiografija

Automobili

Bajke

Biografija

Biološke nauke

Botanika

Dečije knjige

Dizajn

Domaće pripovetke

Domaći roman

Drama

E-knjiga

Ekologija

Ekonomija

Elektrotehnika

Enciklopedija

Esejistika

Etika

Fantastika

Film

Filologija

Filozofija

Fizika

Fotografija

Geografija

Geologija

Građevinarstvo

Hemija

Hidrotehnika

Hobi

Horor

Humor

Intervju

Istorija

Istorija i teorija književnosti

Istorija umetnosti

Istorijski roman

Knjiga posle posla - Beletristika i ostala izdanja

Knjižare i naše knjige

Književna kritika

Kuvari, hrana i piće

Leksikografija

Lingvistika

Ljubavni roman

logo

Magija

Marketing

Mašinstvo

Matematika

Medicina

Memoari

Menadžment

Modeliranje podataka

Monografija

Muzika

Nagrađivanje knjige

Naučna fantastika

OpenOffice.org

Operativni sistemi

Oracle

Organizacione nauke

Pedagogija

Pisci u medijima

Ples

Poezija

Politika

Poljoprivreda

Popularna medicina

Popularna nauka

Popularna psihologija

Posao

Pozorište

Pravo

Pravoslavlje

Primenjene nauke

Pripovetke

Prirodne nauke

Priručnik

Psihologija

Publicistika

Putopis

Religija

Roman

Satira

Saveti

Slikarstvo

Socijalna mreža - Facebook

Sociologija

Sport

Sport i hobi

Strip

Tableti

Tehnologija

Triler

Turizam

Twitter

Udžbenici

Umetnost

Urbanizam

UX DIZAJN

 

Python programiranje

 

Python Data Analysis - Second Edition

 

Python Data Analysis - Second Edition

Autor: Armando Fandango
Broj strana: 330
ISBN broj: 9781787127487
Izdavač: PACKT PUBLISHING
Godina izdanja: 2017.

Pregleda (30 dana / ukupno): 27 / 171

Predlog za prevod

  • Twitter
  • Facebook
  • Google plus
  • Linkedin
  • Pinterest
  • Email

 

 

What You Will Learn

  • Install open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platforms
  • Prepare and clean your data, and use it for exploratory analysis
  • Manipulate your data with Pandas
  • Retrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5
  • Visualize your data with open source libraries such as matplotlib, bokeh, and plotly
  • Learn about various machine learning methods such as supervised, unsupervised, probabilistic, and Bayesian
  • Understand signal processing and time series data analysis
  • Get to grips with graph processing and social network analysis

Book Description

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks.

With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis.

The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.

Authors

Armando Fandango

Armando Fandango is Chief Data Scientist at Epic Engineering and Consulting Group, and works on confidential projects related to defense and government agencies. Armando is an accomplished technologist with hands-on capabilities and senior executive-level experience with startups and large companies globally. His work spans diverse industries including FinTech, stock exchanges, banking, bioinformatics, genomics, AdTech, infrastructure, transportation, energy, human resources, and entertainment.

Armando has worked for more than ten years in projects involving predictive analytics, data science, machine learning, big data, product engineering, high performance computing, and cloud infrastructures. His research interests spans machine learning, deep learning, and scientific computing.

Table of Contents

Chapter 1: Getting Started with Python Libraries
Chapter 2: NumPy Arrays
Chapter 3: The Pandas Primer
Chapter 4: Statistics and Linear Algebra
Chapter 5: Retrieving, Processing, and Storing Data
Chapter 6: Data Visualization
Chapter 7: Signal Processing and Time Series
Chapter 8: Working with Databases
Chapter 9: Analyzing Textual Data and Social Media
Chapter 10: Predictive Analytics and Machine Learning
Chapter 11: Environments Outside the Python Ecosystem and Cloud Computing
Chapter 12: Performance Tuning, Profiling, and Concurrency

 

Budite prvi koji će ostaviti komentar.

Ostavite komentar Ostavite komentar

 

Preporučujemo

 

Mastering Probabilistic Graphical Models Using Python

1. Mastering Probabilistic Graphical Models Using Python

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

Predlog za prevod

Više o knjizi Više o knjizi

 

Mastering PyCharm

2. Mastering PyCharm

If you know PyCharm but want to understand it better and leverage its more powerful but less obvious tool set, this is the book for you. Serving as a launch pad for those who want to master PyCharm and completely harness its best features, it would be helpful if you were familiar with some of Python’s most prominent tools such as virtualenv and Python’s popular docstring formats such as reStructuredText and EpyType.

Predlog za prevod

Više o knjizi Više o knjizi

 

Mastering Social Media Mining with Python

3. Mastering Social Media Mining with Python

Acquire and analyze data from all corners of the social web with Python

Predlog za prevod

Više o knjizi Više o knjizi