Oblasti, naše knjige

Java, JavaScript, JScript, Perl

C++ Visual C++ C#

Apple - MAC OS X

Visual Basic .NET, VBA, V. Studio

Web design

Android

PHP I MYSQL

Python programiranje

WordPress

AutoCad, ArchiCAD, SolidWorks, Catia, Pro/Engineer

Mašinsko učenje

Access

Animacija

Audio, Multimedia, Video

Baze podataka

Cloud

CSS

Delphi

Digitalna fotografija

Django

E-komerc

ECDL

GOOGLE

Grafika, Dizajn, Štampa

Hardver

Internet

Joomla

jQuery

Mreže

MS Office

Obrada teksta

OFFICE 2013

Programiranje

Raspberry PI

Rečnici

Robotika

Sertifikati

SQL Server

Statistika

Tabele

Telekomunikacije

Unix, Linux

Windows

Windows 7

Windows 8

Zaštita i sigurnost

 

Oblasti, drugi izdavači

Alternativna učenja

Antropologija

Arheologija

Arhitektura

Astrologija

Astronomija

Audio kursevi + knjige

Autobiografija

Automobili

Bajke

Biografija

Biološke nauke

Botanika

Dečije knjige

Dizajn

Domaće pripovetke

Domaći roman

Drama

E-knjiga

Ekologija

Ekonomija

Elektrotehnika

Enciklopedija

Esejistika

Etika

Fantastika

Film

Filologija

Filozofija

Fizika

Fotografija

Geografija

Geologija

Građevinarstvo

Hemija

Hidrotehnika

Hobi

Horor

Humor

Intervju

Istorija

Istorija i teorija književnosti

Istorija umetnosti

Istorijski roman

Knjiga posle posla - Beletristika i ostala izdanja

Knjižare i naše knjige

Književna kritika

Kuvari, hrana i piće

Leksikografija

Lingvistika

Ljubavni roman

logo

Magija

Marketing

Mašinstvo

Matematika

Medicina

Memoari

Menadžment

Modeliranje podataka

Monografija

Muzika

Nagrađivanje knjige

Naučna fantastika

OpenOffice.org

Operativni sistemi

Oracle

Organizacione nauke

Pedagogija

Pisci u medijima

Ples

Poezija

Politika

Poljoprivreda

Popularna medicina

Popularna nauka

Popularna psihologija

Posao

Pozorište

Pravo

Pravoslavlje

Primenjene nauke

Pripovetke

Prirodne nauke

Priručnik

Psihologija

Publicistika

Putopis

Religija

Roman

Satira

Saveti

Slikarstvo

Socijalna mreža - Facebook

Sociologija

Sport

Sport i hobi

Strip

Tableti

Tehnologija

Triler

Turizam

Twitter

Udžbenici

Umetnost

Urbanizam

UX DIZAJN

 

Mašinsko učenje

 

Python Machine Learning

 

Python Machine Learning

Autor: Sebastian Raschka
Broj strana: 454
ISBN broj: 9781783555130
Izdavač: PACKT PUBLISHING
Godina izdanja: 2017.

Pregleda (30 dana / ukupno): 51 / 1376

Predlog za prevod

  • Twitter
  • Facebook
  • Google plus
  • Linkedin
  • Pinterest
  • Email

 

 

About This Book

  • Leverage Python’s most powerful open-source libraries for deep learning, data wrangling, and data visualization
  • Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms
  • Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets

Who This Book Is For

If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.

What You Will Learn

  • Explore how to use different machine learning models to ask different questions of your data
  • Learn how to build neural networks using Keras and Theano
  • Find out how to write clean and elegant Python code that will optimize the strength of your algorithms
  • Discover how to embed your machine learning model in a web application for increased accessibility
  • Predict continuous target outcomes using regression analysis
  • Uncover hidden patterns and structures in data with clustering
  • Organize data using effective pre-processing techniques
  • Get to grips with sentiment analysis to delve deeper into textual and social media data

In Detail

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.

Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.

Authors

Sebastian Raschka

Sebastian Raschka is a PhD student at Michigan State University, who develops new computational methods in the field of computational biology. He has been ranked as the number one most influential data scientist on GitHub by Analytics Vidhya. He has a yearlong experience in Python programming and he has conducted several seminars on the practical applications of data science and machine learning. Talking and writing about data science, machine learning, and Python really motivated Sebastian to write this book in order to help people develop data-driven solutions without necessarily needing to have a machine learning background.

He has also actively contributed to open source projects and methods that he implemented, which are now successfully used in machine learning competitions, such as Kaggle. In his free time, he works on models for sports predictions, and if he is not in front of the computer, he enjoys playing sports.

Table of Contents

Chapter 1: Giving Computers the Ability to Learn from Data
Chapter 2: Training Machine Learning Algorithms for Classification
Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-learn
Chapter 4: Building Good Training Sets – Data Preprocessing
Chapter 5: Compressing Data via Dimensionality Reduction
Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning
Chapter 7: Combining Different Models for Ensemble Learning
Chapter 8: Applying Machine Learning to Sentiment Analysis
Chapter 9: Embedding a Machine Learning Model into a Web Application
Chapter 10: Predicting Continuous Target Variables with Regression Analysis
Chapter 11: Working with Unlabeled Data – Clustering Analysis
Chapter 12: Training Artificial Neural Networks for Image Recognition
Chapter 13: Parallelizing Neural Network Training with Theano

 

Budite prvi koji će ostaviti komentar.

Ostavite komentar Ostavite komentar

 

Preporučujemo

 

Designing Machine Learning Systems with Python

1. Designing Machine Learning Systems with Python

Design efficient machine learning systems that give you more accurate results

Predlog za prevod

Više o knjizi Više o knjizi

 

Python Machine Learning Cookbook

2. Python Machine Learning Cookbook

100 recipes that teach you how to perform various machine learning tasks in the real world

Predlog za prevod

Više o knjizi Više o knjizi

 

Machine Learning with TensorFlow

3. Machine Learning with TensorFlow

Tackle common commercial machine learning problems with Google’s TensorFlow library and build deployable solutions

Predlog za prevod

Više o knjizi Više o knjizi