Oblasti, naše knjige

Web design

Java, JavaScript, JScript, Perl

C++ Visual C++ C#

Apple - MAC OS X

Visual Basic .NET, VBA, V. Studio

Android

PHP I MYSQL

Python programiranje

WordPress

AutoCad, ArchiCAD, SolidWorks, Catia, Pro/Engineer

Mašinsko učenje

Access

Animacija

Audio, Multimedia, Video

Baze podataka

Cloud

CSS

Delphi

Digitalna fotografija

Django

E-komerc

ECDL

GOOGLE

Grafika, Dizajn, Štampa

Hardver

Internet

Joomla

jQuery

Mreže

MS Office

Obrada teksta

OFFICE 2013

Programiranje

Raspberry PI

Rečnici

Robotika

Ruby i Ruby on Rails

Sertifikati

SQL Server

Statistika

Tabele

Telekomunikacije

Unix, Linux

Windows

Windows 7

Windows 8

Zaštita i sigurnost

 

Oblasti, drugi izdavači

Alternativna učenja

Antropologija

Arheologija

Arhitektura

Astrologija

Astronomija

Audio kursevi + knjige

Autobiografija

Automobili

Bajke

Biografija

Biološke nauke

Botanika

Dečije knjige

Dizajn

Domaće pripovetke

Domaći roman

Drama

E-knjiga

Ekologija

Ekonomija

Elektrotehnika

Enciklopedija

Esejistika

Etika

Fantastika

Film

Filologija

Filozofija

Fizika

Fotografija

Geografija

Geologija

Građevinarstvo

Hemija

Hidrotehnika

Hobi

Horor

Humor

Intervju

Istorija

Istorija i teorija književnosti

Istorija umetnosti

Istorijski roman

Knjiga posle posla - Beletristika i ostala izdanja

Knjižare i naše knjige

Književna kritika

Kuvari, hrana i piće

Leksikografija

Lingvistika

Ljubavni roman

logo

Magija

Marketing

Mašinstvo

Matematika

Medicina

Memoari

Menadžment

Modeliranje podataka

Monografija

Muzika

Nagrađivanje knjige

Naučna fantastika

OpenOffice.org

Operativni sistemi

Oracle

Organizacione nauke

Pedagogija

Pisci u medijima

Ples

Poezija

Politika

Poljoprivreda

Popularna medicina

Popularna nauka

Popularna psihologija

Posao

Pozorište

Pravo

Pravoslavlje

Primenjene nauke

Pripovetke

Prirodne nauke

Priručnik

Psihologija

Publicistika

Putopis

Religija

Roman

Satira

Saveti

Slikarstvo

Socijalna mreža - Facebook

Sociologija

Sport

Sport i hobi

Strip

Tableti

Tehnologija

Triler

Turizam

Twitter

Udžbenici

Umetnost

Urbanizam

UX DIZAJN

 

Mašinsko učenje

 

Mastering Machine Learning Algorithms

 

Mastering Machine Learning Algorithms

Autor: Giuseppe Bonaccorso
Broj strana: 576
ISBN broj: 9781788621113
Izdavač: PACKT PUBLISHING
Godina izdanja: 2018.
Kataloški broj: 0.

Pregleda (30 dana / ukupno): 102 / 102

Predlog za prevod

  • Twitter
  • Facebook
  • Google plus
  • Linkedin
  • Pinterest
  • Email

 

 

What You Will Learn

  • Explore how a ML model can be trained, optimized, and evaluated
  • Understand how to create and learn static and dynamic probabilistic models
  • Successfully cluster high-dimensional data and evaluate model accuracy
  • Discover how artificial neural networks work and how to train, optimize, and validate them
  • Work with Autoencoders and Generative Adversarial Networks
  • Apply label spreading and propagation to large datasets
  • Explore the most important Reinforcement Learning techniques

Book Description

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour.

Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks.

If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.

Authors

Giuseppe Bonaccorso

Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning solution design, management, and delivery. He got his MScEng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and NLP.

Table of Contents

Chapter 1: Machine Learning Model Fundamentals
Chapter 2: Introduction to Semi-Supervised Learning
Chapter 3: Graph-Based Semi-Supervised Learning
Chapter 4: Bayesian Networks and Hidden Markov Models
Chapter 5: EM Algorithm and Applications
Chapter 6: Hebbian Learning and Self-Organizing Maps
Chapter 7: Clustering Algorithms
Chapter 8: Ensemble Learning
Chapter 9: Neural Networks for Machine Learning
Chapter 10: Advanced Neural Models
Chapter 11: Autoencoders
Chapter 12: Generative Adversarial Networks
Chapter 13: Deep Belief Networks
Chapter 14: Introduction to Reinforcement Learning
Chapter 15: Advanced Policy Estimation Algorithms

 

Budite prvi koji će ostaviti komentar.

Ostavite komentar Ostavite komentar

 

Preporučujemo

 

R Machine Learning By Example

1. R Machine Learning By Example

Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Predlog za prevod

Više o knjizi Više o knjizi

 

Practical Machine Learning

2. Practical Machine Learning

This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately.

Predlog za prevod

Više o knjizi Više o knjizi

 

Learning Apache Spark 2

3. Learning Apache Spark 2

Learn about the fastest-growing open source project in the world, and find out how it revolutionizes big data analytics

Predlog za prevod

Više o knjizi Više o knjizi