Oblasti, naše knjige

Web design

Java, JavaScript, JScript, Perl

C++ Visual C++ C#

Apple - MAC OS X

Visual Basic .NET, VBA, V. Studio

Android

PHP I MYSQL

FULL STACK DEVELOPMENT

Python programiranje

WordPress

AutoCad, ArchiCAD, SolidWorks, Catia, Pro/Engineer

Mašinsko učenje

Access

Animacija

Audio, Multimedia, Video

Baze podataka

Cloud

CSS

Delphi

Digitalna fotografija

Django

E-komerc

ECDL

GOOGLE

Grafika, Dizajn, Štampa

Hardver

Internet

Joomla

jQuery

Mreže

MS Office

Obrada teksta

OFFICE 2013

Programiranje

Raspberry PI

Rečnici

Robotika

Ruby i Ruby on Rails

Sertifikati

SQL Server

Statistika

Tabele

Telekomunikacije

Unix, Linux

Windows

Windows 7

Windows 8

Zaštita i sigurnost

 

Oblasti, drugi izdavači

Alternativna učenja

Antropologija

Arheologija

Arhitektura

Astrologija

Astronomija

Audio kursevi + knjige

Autobiografija

Automobili

Bajke

Biografija

Biološke nauke

Botanika

Dečije knjige

Dizajn

Domaće pripovetke

Domaći roman

Drama

E-knjiga

Ekologija

Ekonomija

Elektrotehnika

Enciklopedija

Esejistika

Etika

Fantastika

Film

Filologija

Filozofija

Fizika

Fotografija

Geografija

Geologija

Građevinarstvo

Hemija

Hidrotehnika

Hobi

Horor

Humor

Intervju

Istorija

Istorija i teorija književnosti

Istorija umetnosti

Istorijski roman

Knjiga posle posla - Beletristika i ostala izdanja

Knjižare i naše knjige

Književna kritika

Kuvari, hrana i piće

Leksikografija

Lingvistika

Ljubavni roman

logo

Magija

Marketing

Mašinstvo

Matematika

Medicina

Memoari

Menadžment

Modeliranje podataka

Monografija

Muzika

Nagrađivanje knjige

Naučna fantastika

OpenOffice.org

Operativni sistemi

Oracle

Organizacione nauke

Pedagogija

Pisci u medijima

Ples

Poezija

Politika

Poljoprivreda

Popularna medicina

Popularna nauka

Popularna psihologija

Posao

Pozorište

Pravo

Pravoslavlje

Primenjene nauke

Pripovetke

Prirodne nauke

Priručnik

Psihologija

Publicistika

Putopis

Religija

Roman

Satira

Saveti

Slikarstvo

Socijalna mreža - Facebook

Sociologija

Sport

Sport i hobi

Strip

Tableti

Tehnologija

Triler

Turizam

Twitter

Udžbenici

Umetnost

Urbanizam

UX DIZAJN

Zoologija

 

Mašinsko učenje

 

Machine Learning with R - Third Edition

 

Machine Learning with R - Third Edition

Autor: Brett Lantz
Broj strana: 458
ISBN broj: 9781788295864
Izdavač: PACKT PUBLISHING
Godina izdanja: 2019.

Pregleda (30 dana / ukupno): 22 / 267

Predlog za prevod

  • Twitter
  • Facebook
  • Google plus
  • Linkedin
  • Pinterest
  • Email

 

 

What You Will Learn

  • Discover the origins of machine learning and how exactly a computer learns by example
  • Prepare your data for machine learning work with the R programming language
  • Classify important outcomes using nearest neighbor and Bayesian methods
  • Predict future events using decision trees, rules, and support vector machines
  • Forecast numeric data and estimate financial values using regression methods
  • Model complex processes with artificial neural networks — the basis of deep learning
  • Avoid bias in machine learning models
  • Evaluate your models and improve their performance
  • Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow

Book Description

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data.

Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings.

This new 3rd edition updates the classic R data science book with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.

Authors

Brett Lantz

Brett Lantz (@DataSpelunking) has spent more than 10 years using innovative data methods to understand human behavior. A sociologist by training, Brett was first captivated by machine learning during research on a large database of teenagers' social network profiles. Brett is a DataCamp instructor and a frequent speaker at machine learning conferences and workshops around the world. He is known to geek out about data science applications for sports, autonomous vehicles, foreign language learning, and fashion, among many other subjects, and hopes to one day blog about these subjects at Data Spelunking, a website dedicated to sharing knowledge about the search for insight in data.

Table of Contents

Chapter 1: Introducing Machine Learning
Chapter 2: Managing and Understanding Data
Chapter 3: Lazy Learning – Classification Using Nearest Neighbors
Chapter 4: Probabilistic Learning – Classification Using Naive Bayes
Chapter 5: Divide and Conquer – Classification Using Decision Trees and Rules
Chapter 6: Forecasting Numeric Data – Regression Methods
Chapter 7: Black Box Methods – Neural Networks and Support Vector Machines
Chapter 8: Finding Patterns – Market Basket Analysis Using Association Rules
Chapter 9: Finding Groups of Data – Clustering with k-means
Chapter 10: Evaluating Model Performance
Chapter 11: Improving Model Performance
Chapter 12: Specialized Machine Learning Topics

 

Budite prvi koji će ostaviti komentar.

Ostavite komentar Ostavite komentar

 

Preporučujemo

 

Machine Learning with R - Third Edition

1. Machine Learning with R - Third Edition

Solve real-world data problems with R and machine learning

Predlog za prevod

Više o knjizi Više o knjizi

 

R Machine Learning By Example

2. R Machine Learning By Example

Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Predlog za prevod

Više o knjizi Više o knjizi

 

Mastering Machine Learning Algorithms

3. Mastering Machine Learning Algorithms

Explore and master the most important algorithms for solving complex machine learning problems.

Predlog za prevod

Više o knjizi Više o knjizi